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We have carried out a numerical study of a system of hydrodynamic equations including director reorien-
tation, fluid flow, and temperature redistribution across a two-dimensional �2D� hybrid-oriented liquid-crystal
�HOLC� cell under the influence of a heat flow directed normal to the upper bounding surface, whereas on the
rest boundaries the temperature is kept constant. Calculations based upon the nonlinear extension of the
classical Ericksen-Leslie theory shows that the HOLC material under the influence of the heat flow, after some
time, more than the time of relaxation, for instance, of the director field in the HOLC cell, settles down to the
rest state regime, where the horizontal and vertical components of the velocity vector are equal to zero, and the
temperature field across the LC cell finally reaches the value of temperature on the lower and two lateral
bounding surfaces. The role of hydrodynamic flow in the relaxation processes of the temperature field to its
equilibrium distribution across the 2D HOLC cell, containing 4−n−pentyl−4�−cyanobiphenyl, has been
investigated, for a number of dynamic regimes.
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I. INTRODUCTION

The widely used flat-panel liquid-crystal displays �LCDs�
consist of a liquid-crystal �LC� film sandwiched between two
glass or plastic surfaces on the scale of the order of microme-
ters across which a voltage may be applied, independently to
each pixel of the LCD. In this structure, the transmission of
light through individual pixels is controlled by a potential
difference applied between electrodes on the back plate of
the LCD �1�. This applied electric field may alter the molecu-
lar configuration of the LC layer and thus alter the optical
characteristics of the LCD. In the field of LC phases, a great
deal is known about their deformations under the influence
of electric or magnetic fields �2�, whereas, on the other hand,
comparatively little is known about the effect of temperature
gradient on their structure properties �3–8�.

The purpose of this paper is to show, in the framework of
the nonlinear extension of the Ericksen-Leslie theory �9,10�,
together with accounting for the thermoconductivity equa-
tion for the temperature field T�t ,r� �11�, the way how in the
microscopic scale two-dimensional �2D� hybrid-oriented LC
�HOLC� cell can dissipate the energy which has been in-
jected into the LC cell, for instance, across the upper re-
stricted surface. The second aim is to show how much influ-
ences both the direction and magnitude of the hydrodynamic
flow v produced by induced heating on the director reorien-
tation n̂�t ,r� across the HOLC cell.

Understanding how an elastic soft material, such as LCs,
deforms under the influence of external forces, both tempera-
ture gradient and mechanical efforts, is a question of great
fundamental interest, as well as an essential piece of knowl-
edge in material science. Despite the fact that certain quali-
tative and quantitative advances in a hydrodynamic descrip-

tion of the relaxation processes in the LC phase under the
influence of temperature gradient have been achieved, it is
still too early to talk about the development of a theory
which would make it possible to describe the dissipation
processes in confined LC phase. But taking into account that
the demand for increased resolution grows, along with min-
iaturization for projected-based LCDs, such advances are a
question of great technological interest too �12�.

The outline of this paper is as follows. The system of
hydrodynamic equations describing both director motion and
fluid flow of a liquid-crystal phase confined between two
horizontal and two lateral bounding surfaces, with account-
ing for the heat flow across the upper bounding surface, is
given in Sec. II. Numerical results for the relaxation regimes
caused by the vertical temperature gradient, describing ori-
entational relaxation of the director, velocity, and tempera-
ture, are given in Sec. III. Conclusions are summarized in
Sec. IV.

II. FORMULATION OF THE BALANCE OF THE
MOMENTUM AND TORQUE EQUATIONS AND

CONDUCTIVITY EQUATION FOR NEMATIC FLUIDS

To fix ideas and notation, we shall be considering a
HOLC film delimited by two horizontal and two lateral sur-
faces at mutual distance d on scale on the order of microme-
ters, with the heat flow q

��� �T�t,x,z�
�z

�
z=d

= q , �1�

across the upper restricted boundary, whereas on the rest
boundaries the temperature is kept constant,

T0�x�d,z=0 = Tx=0,0�z�d = Tx=d,0�z�d = Tlw. �2�

Here �� is the heat conductivity coefficient perpendicular

to the director n̂= �nx ,0 ,nz�=sin �î+cos �k̂, where �
���t ,x ,z� denotes the polar angle, i.e., the angle between
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the direction of the director n̂�t ,r� and the normal k̂ to the
boundary surfaces, and Tlw is the temperature on the lower
and two lateral solid surfaces. The coordinate system defined
by our task assumed that the director n̂ is in the XZ plane,

where î is the unit vector directed parallel to the restricted
surfaces, which coincides with the planar director orientation

on the upper restricted surface �î � n̂z=d�, and ĵ= k̂� î. There-
fore, the hybrid aligned nematic state contains a gradient of
�� from homeotropic orientation at the lower surface to pla-
nar orientation at the upper and lateral surfaces, i.e.,

�0�x�d,z=0 = �x=0,0�z�d = �x=d,0�z�d = 0,

�0�x�d,z=d =
�

2
. �3�

Taking into account that the size of the LC film d
	1–5 �m, one can assume that the mass density 	m
=const across the HOLC cell, and one deals with an incom-
pressible fluid. Incompressibility condition � ·v=0 assumes
that

u,x + w,z = 0, �4�

where u�vx�t ,x ,z� and w�vz�t ,x ,z� are the components of
the vector v, and u,x= �u

�x .
The dimensionless hydrodynamic equations describing

the reorientation of the LC phase in 2D case, when there
exists a heat flow across the upper restricted surface, whereas
the temperature on the rest surfaces is kept constant, can be
derived from the dimensionless torque balance equation Tel

+Tvis+Ttm=0, where Tel=Belĵ is the elastic �2�, Tvis=Bvisĵ is
the viscous �3,6–8�, and Ttm=
1Btmĵ is the thermomechani-
cal �3,5–8� dimensionless torques, respectively �for details,
see the Appendix�, the dimensionless Navier-Stokes equation

for the velocity field v=uî+wk̂ �13�,


2
du

d�
= �xx,x + �zx,z,


2
dw

d�
= �zz,z + �xz,x, �5�

where du
d� is the material derivative of the velocity component

u, �ij = P
ij +�ij
el+�ij

vis+�ij
tm�i , j=x ,z� is the stress tensor �ST�

of the LC system, P is the hydrostatic pressure in the HOLC
cell, and �ij

el, �ij
vis, and �ij

tm are the dimensionless ST compo-
nents corresponding to the elastic, viscous, and thermome-
chanical forces �see the Appendix�, respectively. The dimen-
sionless equation for the heat conduction, due to the growth
of the temperature difference 
�=�2−�1 on the LC cell
boundaries, excited both by the velocity field and the heat
flow, takes the form �for details, see also the Appendix� �11�


3
d�

d�
= D1�,xx + D2�,zz + 2D3�,xz + D1,x�,x + D2,z�,z − D3,x�,z

− D3,z�,x, �6�

where D1=�nx
2+nz

2, D2=�nz
2+nx

2, and D3= ��−1�nxnz, are

the functions of the polar angle �, �=�� /�� is the dimen-
sionless parameter, and �� is the heat conductivity coefficient
parallel to the director. Here ����� ,x ,z�=T�� ,x ,z� /TNI is
the dimensionless temperature, TNI is the nematic-isotropic
transition temperature, ��2 ,�1� is the temperature interval
across the LC sample and belongs to the nematic stability
range, �,x= ��

�x , �,xx= �2�

�x2 , 
1=�
TNI

K1
, 
2=

	mK1

�1
2 , and 
3=

	mCpK1

�1��
are

three parameters of the system, K1 and K3 are the splay and
bend elastic constants of the LC phase, �	10−12 J /mK is
the thermomechanical constant �2,3,7�, �1 and �2 are the
rotational viscosity coefficients, and Cp is the heat capacity;
whereas �= �

K1

�1d2 �t is the dimensionless time, z̄= z
d is the di-

mensionless distance away from the lower solid surface, and
x̄= x

d is the dimensionless space variable corresponding to x
axis. Notice that a single-constant approximation for the
thermomechanical coupling tensor has been proposed �3�, as
well as the overbars in the space variables x and z have been
eliminated. In the following, we are focused primarily on the
heat conduction regime in the HOLC cell, which assume that
across the upper surface the heat flow is restricted �Eq. �1��,
whereas on the rest surfaces the temperature is kept constant
�Eq. �2��. Physically, this means that across the LC sample, a
temperature gradient �T may be built up, directed from the
cooler to the warmer surfaces, under the action of the hydro-
dynamic flow, and excited by the heat flow q across to the
upper boundary.

To be able to observe the formation of the temperature
difference 
� across the LC sample, under the action of the
heat flow q, when the heating occurs during some times �in,
we consider the dimensionless analog of the torque balance
equation �for details, see the Appendix�,

nx
dnz

d�
− nz

dnx

d�
+

1

2
�w,x − u,z� + nxnz�w,z − u,x��

+ �nx
2 − nz

2��u,z + w,x�� + nzM0,x − nxM0,z

+
K3

K1
�nzh,z − nxh,x� + 
1�,x
−

1

2
nzM0 − nzMxx

+ nx
2�nxMzz − Mxxnz + 2nxMxz�� + 
1�,z
1

2
nxM0

+ nxMzz + nz
2�nxMzz − Mxxnx − 2nzMxz�� = 0, �7�

where �=�2 /�1, M0=� · n̂ is the scalar invariant of the ten-
sor M= 1

2 ��n̂+ ��n̂�T�, and M0,i=
�M0

�xi
�i=x ,z�. Here ��n̂�T is

the transposition of �n̂.
Now, the reorientation of the director in the LC film con-

fined between two horizontal and two vertical solid surfaces,
when the relaxation regime is governed by the viscous, elas-
tic, and thermomechanical forces, and with accounting for
the flow, can be obtained by solving the system of the non-
linear partial differential Eqs. �5�–�7� with the appropriate
dimensionless boundary conditions for the polar angle

�0�x�1,z=0 = �x=0,0�z�1 = �x=1,0�z�1 = 0,

A. V. ZAKHAROV AND A. A. VAKULENKO PHYSICAL REVIEW E 80, 031711 �2009�

031711-2



�0�x�1,z=1 =
�

2
, �8�

velocity

u0�x�1,z=0 = ux=0,0�z�1 = ux=d,0�z�1 = u0�x�1,z=1 = 0,

w0�x�1,z=0 = wx=0,0�z�1 = wx=d,0�z�1 = w0�x�1,z=1 = 0,

�9�

and temperature

�0�x�1,z=0 = �x=0,0�z�1 = �x=1,0�z�1 = �lw,

� ����,x,z�
�z

�
0�x�1,z=1

= Q̄ . �10�

Here �lw=
Tlw

TNI
, and Q̄=− qd

TNI��
is the dimensionless heat flow

across the upper restricted surface. Recently, laser-induced

heating was used to inject energy Q̄ across the bounding
surface at the microscopic scale �14�. In that case, the LC
sample was heated by a laser beam focused, for instance, on
the upper bounding surface �z=1,x=x0�, with intensity

I�x�=
2P0

��0
2 exp�−

2�x−x0�2

�0
2 �, where P0 is the laser power, and �0

is the Gaussian spot size. Taking into account that the total
absorbed laser power is Pin=�I�x�, the heat flow across the
upper restricted surface can be written as

Q̄ = Q exp�−
2�x − x0�2

�̄0
2 �H��in − �� , �11�

where � is the absorption coefficient, �̄0=
�0

d , Q=−
2�P0d

��0
2��TNI

is
the dimensionless heat flow’s coefficient, H��in−�� is the
Heaviside step function, and �in is the duration of the energy
injection into the LC sample.

On the other hand, when the director n̂ is strongly homeo-
tropically anchored to the lower and two lateral surfaces, and
homogeneously to the upper restricted surfaces the polar
angle has to satisfy the boundary conditions �8� and its initial
orientation is chosen equal to ���=0,x ,z�=�elast�x ,z�, where
�elast�x ,z� is obtained from Eq. �7�, with u,x=u,z=w,x=w,z
=�,x=�,z=0, and the boundary and initial conditions in the
form of Eqs. �8�, and ���=0,x ,z�= �

2 z, for 0�z�1, and
���=0,x ,0�=0, for ∀x, respectively, and then, under the ac-
tion of the viscous, elastic, and thermomechanical forces,
allowed to relax to its equilibrium value �eq�x ,z�.

For the case of 4−cyano−4�−pentylbiphenyl�5CB�, at
temperature corresponding to nematic phase, the set of pa-
rameters involved in Eqs. �5�–�7� are 
1	24, 
2	2�10−6,
and 
3	6�10−4 �for details, see Refs. �5,8��. Using the fact
that 
2 and 
3 are �1, the Navier-Stokes �Eqs. �5�� and the
heat conduction �Eq. �6�� equations can be considerably sim-
plified. Thus, the whole left-hand side of Eqs. �5� and �6� can
be neglected and these equations take the form

�xx,x + �zx,z = 0,

�zz,z + �xz,x = 0, �12�

and

D1�,xx + D2�,zz + 2D3�,xz + D1,x�,x + D2,z�,z − D3,x�,z

− D3,z�,x = 0, �13�

where D1,x=2��nxnx,x+nznz,x�, D2,z=2��nznz,z+nxnx,z�, and
D3,z= ��−1��nznx,x+nxnz,x� are the functions of the polar
angle �.

III. ORIENTATIONAL RELAXATION OF THE DIRECTOR,
VELOCITY, AND TEMPERATURE FIELDS IN THE

HOLC CELL

The relaxation of the director n̂ to its equilibrium orien-
tation n̂eq, which is described by the polar angle ��� ,x ,z�
changing from the initial condition ���=0,x ,z�=�elast�x ,z� to
�eq�x ,z� �see Figs. 1�a�–1�d��, both velocities u�� ,x ,z�
=vx�� ,x ,z� �see Figs. 2�a�–2�d�� and w�� ,x ,z�=vz�� ,x ,z�
�see Figs. 3�a�–3�d�� and temperature ��� ,x ,z� �see Figs.
4�a�–4�d��, under the action of the temperature gradient �T,
caused by the heat flow across the upper restricted surface,
whereas on the rest bounding surfaces the temperature is
kept constant, can be obtained by solving the system of the
nonlinear partial differential Eqs. �7�, �12�, and �13�, together
with the boundary conditions �8�–�10�, by means of the nu-
merical relaxation method �15�. For that aim, the system of
Eqs. �12� and �13� should be rewritten in the form

FIG. 1. �Color online� �a� Plot of relaxation of the polar angle
��� ,x=0.5,z� �in rad� to its equilibrium distribution �eq�x=0.5,z� in
the middle part of the HOLC cell, under the influence of the dimen-
sionless heat flow Q=0.44�	3.7�10−3 mW /�m2�, caused by the
laser beam, at different times �1=0.000 42 �curve�1�� , . . . ,�6

=0.0134 �curve�6��, respectively. �b� The same as in �a�, but
the sequence of times is �7=0.014 �curve�7�� , . . . ,�11=�R

=0.22 �curve�11��, respectively. �c� and �d� Plot of relaxation of the
polar angle ��� ,x ,z=0.97� to its equilibrium distribution �eq�x ,z
=0.97� along the width of the HOLC �0�x�1� in the
vicinity of the upper warmer restricted surface �z=0.97�, at dif-
ferent times �1=0.000 42 �curve�1�� , . . . ,�11=�R=0.22 �curve�11��,
respectively.
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�u

��
= B11u,xx + B12u,zz + B13u,xz + B14w,xx + B15w,x + B16�u,z

+ w,x� + ��nx
dnx

d�
�

,x
+

� − 1

2
�nz

dnx

d�
�

,z

+
� + 1

2
�nx

dnz

d�
�

,z
+ 
1F1��� ,

�w

��
= B21w,xx + B22w,zz + B23w,xz + B24u,zz − B25w,z + B26�u,z

+ w,x� + ��nz
dnz

d�
�

,z
+

� − 1

2
�nx

dnz

d�
�

,x

+
� + 1

2
�nz

dnx

d�
�

,x
+ 
1F2��� , �14�

��

��
= D1�,xx + D2�,zz + 2D3�,xz + D1,x�,x + D2,z�,z − D3,x�,z

− D3,z�,x, �15�

where the coefficients Bij�i=1,2 ; j=1, . . . ,6� are the hydro-

dynamic functions, whereas the coefficients Fi�i=1,2� are
the thermomechanical functions and are collected in the
Appendix. In the calculations, the relaxation criterion
�= ����m+1��� ,x ,z�−��m��� ,x ,z�� /��m��� ,x ,z�� was chosen
equal to be 10−4, and the numerical procedure was then car-
ried out until a prescribed accuracy was achieved. Here m is
the iteration number and �R is the relaxation time of the
system.

A. Slow heating regime

The relaxation process of the polar angle ��� ,x ,z� in the
middle part of the dimensionless HOLC cell �x=0.5�
�see Figs. 1�a� and 1�b�� to its equilibrium distribution
�eq�x=0.5,z�, under the influence of the dimensionless heat
flow Q=0.44�	3.7�10−3 mW /�m2�, caused by the
laser beam focused on the upper bounding surface, at differ-
ent times �1=0.000 42�	54 �s� �curve�1�� , . . . ,�11=�R
=0.22�	30 ms� �curve�11��, is shown in Figs. 1�a� and
1�b�, respectively. Here we use times �k=2k−1�1, for k
=1, . . . ,6, whose values increase from curve 1 to curve 6,
and �1=0.000 42, and �k=2k−7�7, for k=7, . . . ,11, whose
values increase from curve 7 to curve 11, and �7=0.014,
respectively, �R denotes the relaxation time of the system,
and �in	�6	0.0134�	1.9 ms� is the duration of the energy
injection into the HOLC cell across the upper restricted sur-
face by the infrared laser with the power P0=14.3 mW. The
relaxation of the polar angle is characterized by the mono-
tonic increase � from ��x=0.5,z=0�=0, on the lower cooler
restricted surface, to ��x=0.5,z=1�= �

2 , on the upper warmer
restricted surface, respectively. The relaxation of the polar
angle ��� ,x ,z=0.97� to its equilibrium distribution �eq�x ,z
=0.97� along the width of the HOLC �0�x�1� in the vi-
cinity of the upper warmer restricted surface �z=0.97�, at
different times �1=0.000 42�	54 �s� �curve�1�� , . . . ,�11
=�R=0.22�	30 ms� �curve�11��, is shown in Figs. 1�c� and
1�d�, respectively. The relaxation process is characterized by
the nonsymmetric profile of ��� ,x ,z=0.97� with respect to
the middle part �x=0.5� of the HOLC cell, which caused by
the nonsymmetric effect both the velocity fields u�� ,x ,z�

FIG. 4. �Color online� �a�–�d� Plot of relaxation of the tempera-
ture ��� ,x ,z� to its equilibrium distribution �eq�x ,z� across the
HOLC. The sequence of times is the same as in Figs. 1�a�–1�d�.

FIG. 2. �Color online� �a�–�d� Plot of relaxation of the velocity
u�� ,x ,z� to its equilibrium distribution ueq�x ,z� across the HOLC.
The sequence of times is the same as in Figs. 1�a�–1�d�.

FIG. 3. �Color online� �a�–�d� Plot of relaxation of the velocity
w�� ,x ,z� to its equilibrium distribution weq�x ,z� across the HOLC.
The sequence of times is the same as in Figs. 1�a�–1�d�.
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�see Figs. 2�c� and 2�d�� and w�� ,x ,z� �see Figs. 3�c� and
3�d��, respectively.

The maximum of the absolute magnitudes of both dimen-
sional velocities vx�� ,x ,z�= �

�1d
K1

�u�� ,x ,z� and vz�� ,x ,z�
= �

�1d
K1

�w�� ,x ,z� in the HOLC cell, at the initial stage of the
relaxation process are equal to 1.2 mm/s and 0.88 mm/s, for
the horizontal and vertical components �see Figs. 3�c� and
4�c��, at 
�max=0.03�	9.3 K�, respectively. The relaxation
process of the temperature field ��� ,x ,z� in the middle part
of the dimensionless HOLC cell �x=0.5� to its equilibrium
distribution �eq�x=0.5,z�, under the influence of the dimen-
sionless heat flow Q=0.44�	3.7�10−3 mW /�m2�,
caused by the laser beam, at different times
�1=0.000 42 �curve�1�� , . . . ,�11=�R=0.22 �curve�11��, is
shown in Figs. 4�a� and 4�b�, respectively.

The evolution of the dimensionless temperature field
��� ,x=0.5,z� is characterized by the temperature growth
on the upper restricted surface �z=1�, from �z=1
=0.97�	298 K� to �z=1=1.0�	307.3 K�, during the first
part of the relaxation process �curves from �1� to �6�� �see
Fig. 4�a��, with the following temperature decreasing, from
�z=1=1.0�	307.3 K� to �z=1=0.97�	298 K�, after switch-
ing off the laser power �see Fig. 4�b��. Here the value
of �in=�6	0.0134�	1.9 ms�. The second part of the relax-
ation process of ��� ,x=0.5,z� ����6� is characterized
by much faster cooling down of the upper restricted surface
than the rest bulk of the LC sample �see Fig. 4�b��. The
relaxation of the temperature field ��� ,x ,z=0.97� to its equi-
librium distribution �eq�x ,z=0.97� along the width of
the HOLC �0�x�1� in the vicinity of the upper
warmer restricted surface �z=0.97�, at different times
�1=0.000 42 �curve�1�� , . . . ,�11=�R=0.22 �curve�11��, is
shown in Figs. 4�c� and 4�d�, respectively. That relaxation
process is characterized by symmetric growth of the profile
��� ,x ,z=0.97� with respect to the middle part �x=0.5� of the
HOLC cell. Such symmetric evolution of the temperature
field can be explained by much faster relaxation of ��� ,x ,z�
to �eq�x ,z�, then relaxation both of the director and velocity
fields to their equilibrium distributions across the HOLC cell,
and—as results—the weak effect of these fields on �.

B. Fast heating regime

The equilibrium distribution �eq�x=0.5,z� both across the
middle part and in the vicinity of the upper restricted sur-
faces, under the influence of the dimensionless heat flow Q
=3.54�	2.95�10−2 mW /�m2� �which is in eight times
greater than Q in the first case �a��, caused by the laser beam
focused on the upper bounding surface, is shown in Figs.
5�a� and 5�b�, respectively.

Here the duration �in of the energy injection into the
HOLC cell across the upper restricted surface is equal to
0.000 08�	11 �s� and during that time the temperature on
the upper restricted surface growth from �z=1��=0�
=0.97�298 K� to �z=1��=�2=�in	0.000 08�=1.0�307.3 K�
�see Fig. 6�a��, with the following cooling down to
�z=1��=�R=0.064�=0.97�298 K�. Note that the duration
of the laser pulse, at fixed power P0=115 mW, is limited by
the condition that the higher temperature on the upper

bounding surface �z=1 must fall within the nematic stability
range. The relaxation process of the temperature field
��� ,x=0.5,z� in the middle part of the dimensionless
HOLC cell �x=0.5� �see Figs. 6�a� and 6�b�� to its
equilibrium distribution �eq�x=0.5,z�, under the influence
of the dimensionless heat flow Q=3.54�	2.95
�10−2 mW /�m2�, caused by the laser beam, at dif-
ferent times �1=0.000 04�	6 �s� �curve�1�� , . . . ,�12=�R
=0.064�	8.7 ms� �curve�12��, is shown in Figs. 6�a� and
6�b�, respectively. Here �in=�2	0.000 08�	11 �s� is the
duration of the energy injection into the HOLC cell across

FIG. 5. �Color online� �a� The equilibrium distribution of the
angle �eq�x=0.5,z� in the middle part of the HOLC cell, under
influence of the dimensionless heat flow Q=3.54�	2.95
�10−2 mW /�m2�, caused by the laser beam. �b� The equilibrium
distribution �eq�x ,z=0.97� along the width of the HOLC �0�x
�1� in the vicinity of the upper warmer restricted surface �z
=0.97�, under the same as in �a� conditions.

FIG. 6. �Color online� �a� Plot of relaxation of the temperature
field ��� ,x=0.5,z� to its equilibrium distribution �eq�x=0.5,z� in
the middle part of the HOLC cell, under the influence of the dimen-
sionless heat flow Q=3.54�	2.95�10−2 mW /�m2�, caused by the
laser beam, at different times �1=0.000 04 �curve�1�� , . . . ,�5

=0.0006 �curve�5��, respectively. �b� The same as in �a�, but
the sequence of times is �6=0.001 �curve�6�� , . . . ,�12=�R

=0.064 �curve�12��, respectively. �c� and �d� Plot of relaxation
of the temperature field ��� ,x ,z=0.97� to its equilibrium distribu-
tion �eq�x ,z=0.97� along the width of the HOLC �0�x�1� in the
vicinity of the upper warmer restricted surface �z=0.97�, at different
times �1=0.000 04 �curve�1�� , . . . ,�12=�R=0.064 �curve�12��,
respectively.
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the upper restricted surface by the infrared laser with the
power P0=115 mW. The relaxation of the temperature field
��� ,x ,z=0.97� to its equilibrium distribution �eq�x ,z=0.97�
along the width of the HOLC �0�x�1� in the vicinity
of the upper warmer restricted surface �z=0.97�, at
different times �1=0.000 04�	6 �s� �curve�1�� , . . . ,�12=�R
=0.064�	8.7 ms� �curve�12��, is shown in Figs. 6�c� and
6�d�, respectively. Here we use times �k=2k−1�1, for k
=1, . . . ,5, whose values increase from curve 1 to curve 5,
and �1=4�10−5, and �k=2k−6�6, for k=6, . . . ,12, whose val-
ues increase from curve 6 to curve 12, and �6=0.001, respec-
tively. That relaxation process is characterized by symmetric
growth of the profile ��� ,x ,z=0.97� with respect to the
middle part �x=0.5� of the HOLC cell. Such symmetric evo-
lution of the temperature field can be explained by much
faster relaxation of ��� ,x ,z� to �eq�x ,z�, then both ��� ,x ,z�,
and v�� ,x ,z� to their equilibrium values. The evolution of

the velocity field v=uî+wk̂ to its equilibrium distribution in
the HOLC cell is shown in Figs. 7�c�, 7�d�, 8�c�, and 8�d�,
respectively. The relaxation of u�� ,x ,z� in the middle part
of the dimensionless HOLC cell �x=0.5� �see Fig. 7�a�� to
its equilibrium distribution ueq�x=0.5,z�, under the
influence of the dimensionless heat flow Q=3.54�	2.95

�10−2 mW /�m2�, caused by the laser beam, at
different times �1=0.000 04�	6 �s� �curve�1�� , . . . ,�12=�R
=0.064�	8.7 ms� �curve�12��, is shown in Figs. 7�a� and
7�b�, respectively. Here �in	0.000 08�	11 �s� is the dura-
tion of the energy injection into the HOLC cell across the
upper restricted surface by the infrared laser with the power
P0=115 mW. The relaxation of u�� ,x=0.5,z� �see Fig. 7�a��
is characterized by the strong increase of �u�� ,x=0.5,z��,
from �u��=0��=0 to �u��=�2=�in��	2.5, within the first part
of the relaxation process �	11 �s�, in the vicinity of the
upper warmer restricted surface, with following decrease up
to 	0, during the rest time term �R−�2	0.064�	8.7 �s�,
respectively. The relaxation of w�� ,x=0.5,z� to its equilib-
rium distribution across the HOLC is characterized by oscil-
lating behavior of w�� ,x=0.5,z� in the vicinity of the upper
warmer restricted surface �see Figs. 8�a� and 8�b��. Note that
the x asymmetry during the relaxation of the director field
described by the polar angle ��� ,x ,z� �see Figs. 1�c� and
1�d�� is caused by the asymmetric acting of the velocity field.
Note also that under the influence of the heat flow across the
upper restricted surface, only approximately 40% of the LC
sample close to the upper warmer restricted surface is in-
volved in the moving process, whereas the rest amount of the
LC sample is kept unmoved during the full relaxation term
�R	0.64. The maximum of both the absolute magnitudes of
the dimension velocities vx�� ,x ,z�= �

�1d
K1

�u�� ,x ,z� and

vz�� ,x ,z�= �
�1d
K1

�w�� ,x ,z� in the HOLC cell, at the initial
stage of the relaxation process are equals to 0.2 mm/s and
0.05 mm/s, for horizontal and vertical components �see Figs.
7�c� and 8�c��, at 
�max=0.03�	9.3 K�, respectively.

IV. CONCLUSION

In summary, we have investigated the relaxation of direc-
tor n̂�t ,x ,z�, velocity v�t ,x ,z�, and temperature ��t ,x ,z� in
the 2D HOLC cell to their equilibrium values, under the
influence of the heat flow directed normal to the upper
bounding surfaces, when the rest bounding surfaces of the
LC cell are kept at constant temperature. In our case, the
upper LC layer is heated by an infrared laser beam, and the
dynamics of heating occurs with two distinct time scales: �i�
a fast time, with the duration of the laser pulse in �in
	11 �s, and the laser power in P0=115 mW, and �ii� a
slow time scale, with the duration of the laser pulse in �in
	1.9 ms, and the laser power in P0=14.3 mW, respec-
tively. In both these cases, the duration of the laser pulse, at
fixed power in P0=14.3 mW and P0=115 mW, is limited
by the condition that the higher temperature on the upper
bounding surface must fall within the nematic stability range.
Our calculations based upon the nonlinear extension of the
classical Ericksen-Leslie theory shows that the HOLC mate-
rial under the influence of the heat flow, after some time,
more than the time of relaxation, for instance, of the director
field in the HOLC cell, settles down to the rest state regime,
where the horizontal u and vertical w components of velocity
vector are equal to zero, and the temperature field across the
LC cell finally reaches the value of temperature on the lower
and both lateral bounding surfaces. Note that in the case of

FIG. 7. �Color online� �a�–�d� Plot of relaxation of the velocity
u�� ,x ,z� to its equilibrium distribution ueq�x ,z� across the HOLC.
The sequence of times is the same as in Figs. 6�a�–6�d�.

FIG. 8. �Color online� �a�–�d� Plot of relaxation of the velocity
w�� ,x ,z� to its equilibrium distribution weq�x ,z� across the HOLC.
The sequence of times is the same as in Figs. 6�a�–6�d�.
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the fast heating regime �i�, one deals with the heating which
is characterized by “shallow” heating of the LC layers in the
vicinity of the upper bounding surface up to 40% of the full
LC sample, whereas in the case of the slow heating regime
�ii�, one deals with the “deeper” heating of the LC layers up
to 60% of the LC sample far from the upper warmer re-
stricted surface, respectively. Our calculations shows that the
2D HOLC material under the influence of the heat flow di-
rected normal to the upper restricted surface, after some
time, more than the relaxation time, for instance, of the di-
rector field in the HOLC cell, settles down to the rest state
regime, where the horizontal and vertical components of the
velocity vector are equals to zero, and the temperature field
across the LC cell finally reaches the value of temperature on
the lower and two lateral bounding surfaces.

We believe that the present investigation can shed some
light on the problem of the reorientation process in the
HOLC cell under the influence of the heat flow. We also
believe that the paper shows not only some useful routes for
estimating the relaxation times but also analyzing the re-
maining problems associated with LC’s device stability, effi-
ciency, and lifetime.
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APPENDIX: TORQUES AND STRESS TENSOR
COMPONENTS

The torque balance equation can be derived from the di-
mensionless balance of elastic Tel=


WF


n̂ � n̂, viscous Tvis

= 
Rvis


n̂�
� n̂, and thermomechanical Ttm= 
Rtm


n̂�
� n̂ torques,

where WF= 1
2 ��� · n̂�2+

K3

K1
�n̂��� n̂�2� is the dimensionless

elastic energy, n̂�� dn̂
d� is the material derivative of n̂,

whereas

2�1Rvis = �1�n̂ · Ds · n̂�2 + �1�n̂� − Da · n̂�2

+ 2�2�n̂� − Da · n̂� · �Ds · n̂ − �n̂ · Ds · n̂�n̂�

+ �4Ds:Ds + ��5 + �6��n̂ · Ds · Ds · n̂�2

is the viscous, and


1Rtm = �n̂ · ���Ds:M + �� · Ds · M · n̂ + �n̂ · ����n̂�

− Da · n̂ − 3Ds · n̂ + 3�n̂ · Ds · n̂�n̂� · M · n̂

+ n̂��v�T · M · �� + 1
2 �n̂ · Ds · n̂� � � · M · n̂

+ n̂� · M · �� + 1
2M0 � � · �v · n̂

+ �n̂ · ���M0�n̂ · Ds · n̂� + 1
2M0n̂� · ��

is the thermomechanical contributions to the full dimension-
less Rayleigh dissipation function, respectively. Here Ds

= 1
2 ��v+ ��v�T� and Da= 1

2 ��v− ��v�T� are the symmetric
and asymmetric contributions to the rate of strain tensor M
= 1

2 ��n̂+ ��n̂�T�, and M0=� · n̂ is the scalar invariant of the

tensor M. We use here the invariant, multiple dot convention
ab=aibj, a ·b=aibi, A ·B=AikBkj, and A :B=AikBki, where
repeated Cartesian indices are summed.

The dimensionless ST �ij can be obtained directly from
the elastic contribution to the energy and Rayleigh dissipa-
tion function as �el=−

�WF

��n̂ · ��n̂�T, �vis= 
Rvis


�v , and �tm= 
Rtm


�v ,
for the elastic, viscous, and thermomechanical contributions,
respectively.

Straightforward calculations give the following expres-
sions for ST components �ij

el, �ij
vis, and �ij

tm and functions Bel,
Bvis, Btm, and Di�i=1,2 ,3� needed in Eqs. �5� and �6�:

Bel = nzM0,x − nxM0,z +
K3

K1
�nzh,z − nxh,x� ,

Bvis = nx
dnz

d� − nz
dnx

d� + 1
2 �w,x − u,z� + nxnz�w,z − u,x��

+ ��nx
2 − nz

2��u,z + w,x� ,

Btm = �,x�−
1
2nzM0 − nzMxx + nx

2�nxMzz − Mxxnz + 2nxMxz��

+ �,z�
1
2nxM0 + nxMzz + nz

2�nxMzz − Mxxnx

− 2nzMxz��, where h = nz,x − nx,z.

The viscous components of the ST are

�xx
vis = g1u,x + nxnzg2�u,z + w,x� + ��w,x + nx

dnx

d� � ,

�zz
vis = − g3w,z + nxnzg4�u,z + w,x� + ��− w,x + nz

dnz

d� � ,

�xz
vis = − g3w,z + nxnzg6�u,z + w,x� + 1

2 �w,x + nz
dnx

d� − nx
dnz

d� �

+ ��nz
dnx

d� + nx
dnz

d� � ,

�zx
vis = g3u,x + nxnzg7�u,z + w,x� − 1

2 �w,x + nz
dnx

d� − nx
dnz

d� �

+ ��nz
dnx

d� + nx
dnz

d� � ,

with

g1 = 1
�1

��1nx
2�nx

2 − nz
2� + �4 + ��5 + �6�nx

2� ,

g2 = 1
�1

��1nx
2 +

�5+�6

4 −
�2

2 � ,

g3 = 1
�1

��1nz
2�nx

2 − nz
2� − �4 − ��5 + �6�nz

2� ,

g4 = 1
�1

��1nx
2 +

�5+�6

4 +
�2

2 � ,

g5 =
�1

�1
nxnz�nx

2 − nz
2� ,

g6 = 1
�1

��1nx
2nz

2 −
�1

4 +
�2

4 �nz
2 − nx

2� +
�4

2 +
�5+�6

4 nxnz� ,

g7 = 1
�1

��1nx
2nz

2 +
�1

4 +
�2

4 �nx
2 − nz

2� +
�4

2 +
�5+�6

4 nxnz� .

The elastic components of the ST are

�xx
el = − M0nx,x −

K3

K1
hnz,x,�zz

el = − M0nz,z +
K3

K1
hnx,z,
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�xz
el = − M0nx,z −

K3

K1
hnz,z,�zx

el = − M0nz,x +
K3

K1
hnx,x.

The thermomechanical components of the ST are

�xx
tm = 
1��,xh1 + �,zh2�, �zz

tm = 
1��,xh3 + �,zh4� ,

�zx
tm = 
1��,xh5 + �,zh6�, �xz

tm = 
1��,xh7 + �,zh8� ,

where

h1 = 1
2nx�Mxx + Mzz� + nzMxz + nx

2�− 3
2nxMxx + nxMzz

+ 1
2nzMxz� ,

h2 = nzMxx − 2nxMxz + nx
2�− 2nzMxx + 3

2nzMzz + 7
2nxMxz� ,

h3 = 3
2nxMxx − nxMzz + 3

2nzMxz + nx
2�− 3

2nxMxx + 2nxMzz

− 7
2nzMxz� ,

h4 = 3
2nzMxx + 2nzMzz − 3

2nxMxz + nx
2�− nzMxx + 3

2nzMzz

+ 5
2nxMxz� ,

h5 = 2nzMzz + 4nxMxz + nx
2�nzMxx − 3

2nzMzz − 5
2nxMxz� ,

h6 = 5
2nxMzz − 1

2nzMxz + nx
2� 3

2nxMxx − nxMzz + 5
2nzMxz� ,

h7 = 3
2nz�Mxx + Mzz� + 2nxMxz + nx

2�nzMxx − 3
2nzMzz

− 5
2nxMxz� ,

h8 = 1
2nx�Mxx + 2Mzz� + 3

2nzMxz + nx
2� 3

2nxMxx − nxMzz

+ 5
2nzMxz� .

The functions Di�i=1,2 ,3� needed in Eqs. �6� are D1=�nx
2

+nz
2, D2=�nz

2+nx
2, and D3= ��−1�nxnz. Here, �=�� /��.

The coefficients Bij�i=1,2 ; j=1, . . . ,6� are

B11 = g1 + 1
2 − nxnzg7, B12 = nxnzg7, B13 = g5 + nxnzg2,

B14 = nxnzg2 + �, B15 = g1,x + g5,z,

B16 = �nxnzg2�,x + �nxnzg7�,z, B21 = 1
2 + nxnzg6,

B22 = − g3 − nxnzg6, B23 = nxnzg4 − � − g5,

B24 = nxnzg4, B25 = − g5,x − g3,z,

B26 = �nxnzg4�,z + �nxnzg6�,x,

and the functions Fi�i=1,2� are

F1 = h1�,xx + h6�,zz + �h2 + h5��,xz + �h1,x + h5,z��,x

+ �h2,x + h6,z��,z,

F2 = h7�,xx + h4�,zz + �h3 + h8��,xz + �h7,x + h3,z��,x

+ �h8,x + h4,z��,z.
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